semaphore提示您:看后求收藏(第291章 冬瓜,离语,semaphore,新八一中文网),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
输入图像进行可视化分析,实验结果表明动物的头部特征是网络模型作出决策的重要依
据。在此方法的基础上针对多目标进行特征可视化,提出一种改进的 grad-ca++方法,
该方法主要通过更新图像最后一层权重的计算方式并结合目标选择梯度来对包含多个同
类目标的图像进行特征可视化。实验结果表明该方法相比于其他的可视化方法,在多目
标图像的可视化中表现更佳,生成的热力图中包含的同类目标信息更多。
(3)为了更好地对可视化效果进行评价,提出评估可视化效果的新方法。该方
本章未完,点击下一页继续阅读。